A Novel Repressor of the ica Locus Discovered in Clinically Isolated Super-Biofilm-Elaborating Staphylococcus aureus
نویسندگان
چکیده
Staphylococcus aureus TF2758 is a clinical isolate from an atheroma and a super-biofilm-elaborating/polysaccharide intercellular adhesin (PIA)/poly-N-acetylglucosamine (PNAG)-overproducing strain (L. Shrestha et al., Microbiol Immunol 60:148-159, 2016, https://doi.org/10.1111/1348-0421.12359). A microarray analysis and DNA genome sequencing were performed to identify the mechanism underlying biofilm overproduction by TF2758. We found high transcriptional expression levels of a 7-gene cluster (satf2580 to satf2586) and the ica operon in TF2758. Within the 7-gene cluster, a putative transcriptional regulator gene designated rob had a nonsense mutation that caused the truncation of the protein. The complementation of TF2758 with rob from FK300, an rsbU-repaired derivative of S. aureus strain NCTC8325-4, significantly decreased biofilm elaboration, suggesting a role for rob in this process. The deletion of rob in non-biofilm-producing FK300 significantly increased biofilm elaboration and PIA/PNAG production. In the search for a gene(s) in the 7-gene cluster for biofilm elaboration controlled by rob, we identified open reading frame (ORF) SAOUHSC_2898 (satf2584). Our results suggest that ORF SAOUHSC_2898 (satf2584) and icaADBC are required for enhanced biofilm elaboration and PIA/PNAG production in the rob deletion mutant. Rob bound to a palindromic sequence within its own promoter region. Furthermore, Rob recognized the TATTT motif within the icaR-icaA intergenic region and bound to a 25-bp DNA stretch containing this motif, which is a critically important short sequence regulating biofilm elaboration in S. aureus Our results strongly suggest that Rob is a long-sought repressor that recognizes and binds to the TATTT motif and is an important regulator of biofilm elaboration through its control of SAOUHSC_2898 (SATF2584) and Ica protein expression in S. aureus IMPORTANCE: During the search for molecular mechanisms underlying biofilm overproduction of Staphylococcus aureus TF2758, we found a putative transcriptional regulator gene designated rob within a 7-gene cluster showing a high transcriptional expression level by microarray analysis. The deletion of rob in non-biofilm-producing FK300, an rsbU-repaired derivative of NCTC8325-4, significantly increased biofilm elaboration and PIA/PNAG production. The search for a gene(s) in the 7-gene cluster for biofilm elaboration controlled by rob identified ORF SAOUHSC_2898. Besides binding to its own promoter region to control ORF SAOUHSC_2898 expression, Rob recognized the TATTT motif within the icaR-icaA intergenic region and bound to a 25-bp DNA stretch containing this motif, which is a critically important short sequence regulating biofilm elaboration in S. aureus Our results strongly suggest that Rob is a long-sought repressor that recognizes and binds to the TATTT motif and is a new important regulator of biofilm elaboration through its control of SAOUHSC_2898 and Ica protein expression in S. aureus.
منابع مشابه
Biofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus
Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...
متن کاملComplete Genome Sequence of Super Biofilm-Elaborating Staphylococcus aureus Isolated in Japan
Staphylococcus aureus JP080, previously named TF2758, is a clinical isolate from an atheroma and a super biofilm-elaborating strain whose biofilm elaboration is dependent solely on polysaccharide poly-N-acetylglucosamine/polysaccharide intercellular adhesin (PNAG/PIA). Here, we report the complete genome sequence of strain JP080, which consists of one chromosome and one circular plasmid.
متن کاملAssociation between biofilm production, adhesion genes and drugs resistance in different SCCmec types of methicillin resistant Staphylococcus aureus strains isolated from several major hospitals of Iran
Objective(s): The ability of bacteria to produce biofilm and adhesion makes them more resistant to antibiotics. The current study aims to evaluate the biofilm formation by Staphylococcus aureus and to determine the prevalence of adhesion genes, also their correlation with drug resistance.Materials and Methods: A total of 96 MRSA were collected from hospitals of Iran’s western provinces during 2...
متن کاملDetection of Intracellular Adhesion (ica) and Biofilm Formation Genes in Staphylococcus aureus Isolates from Clinical Samples
Background: The nosocomial infections that cause the establishment of biofilms on the embedded biomedical surfaces are the leading cause of sepsis and are often related to colonization of implants by Staphylococcus epidermidis. Materials and Methods: A total of 40 clinical S. aureus isolates were collected from Zabol, Iran. The ability of these strains to form biofilm was determined by microli...
متن کاملCharacterization of Staphylococcal Cassette Chromosome Mec Elements in Biofilm-producing Staphylococcus Aureus, Isolated from Hospital Infections in Isfahan
Background and Aims: Staphylococcus aureus is one of the important pathogens around the world. The present investigation was carried out to study the distribution of Staphylococcal Cassette Chromosome Mec (SCCmec) types and antibiotic resistance properties in methicillin-resistant Staphylococcus aureus isolated from Isfahan hospitals. Materials and Methods: A total of 250 clinical specimens ...
متن کامل